Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Responses of a Cracked Gas-Bearing Spindle

[+] Author Affiliations
Bo-Wun Huang

Cheng Shiu University

Jao-Hwa Kuang

National Sun Yat-Sen University

Paper No. IMECE2004-59480, pp. 545-552; 8 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4702-0 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


The dynamic response of a cracked gas-bearing spindle system is studied in this work. A round Euler-Bernoulli beam is used to approximate the spindle system. The stiffness effect of the gas bearing spindle is considered as massless springs and the Hamilton principle is employed to derive the equation of motion for the spindle system. The effects of crack depth, rotation speed and air applied pressure on the dynamic characteristics of a rotating gas-bearing spindle system are studied.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In