0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamic Analysis of a Serpentine Belt Drive With a Decoupler/Isolator

[+] Author Affiliations
Raghavan Balaji, Eric M. Mockensturm

Pennsylvania State University

Paper No. IMECE2004-61662, pp. 291-303; 13 pages
doi:10.1115/IMECE2004-61662
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4702-0 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

Belt drives employing a single, flat serpentine belt tensioned by a passive tensioner are found in automotive engine Front End Accessory Drive (FEAD) where the crankshaft supplies power to accessories like alternators, air-conditioning compressors, pumps, etc. [1]. When the FEAD undergoes forced vibration due to crankshaft excitation, dynamic tension fluctuations can cause the belt to slip on the accessory pulleys [2]. The probability of belt slip increases with the peak drop in belt tension over the pulley during steady state operation [3]. In this paper, one possible solution is analyzed, using a decoupler to isolate/separate the accessory inertia (e.g. alternator) from the FEAD system. This is achieved by placing between the pulley and the accessory a combination of a one-way rigid clutch and an isolator spring. In this study, the rotational response of a typical FEAD is extended to include the clutch and isolator. An analytical solution is then obtained by considering it as a piecewise-linearized system moving about an equilibrium angular displacements. The performance of the ordinary FEAD with regard to tension fluctuation is then compared to that of the system equipped with a decoupler/isolator. The results obtained indicate that within the practical working range of engine speeds, use of either an isolator or a decoupler-isolator could significantly lower the dynamic tension drop across the accessory pulley.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In