0

Full Content is available to subscribers

Subscribe/Learn More  >

Uniqueness of Solutions for the Identification of Linear Reduced Order Structural Systems

[+] Author Affiliations
Guillermo Franco, Raimondo Betti

Columbia University

Jun Yu

LZA Technology

Paper No. IMECE2004-61193, pp. 247-255; 9 pages
doi:10.1115/IMECE2004-61193
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4702-0 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

The problem of identification of structural systems is an inverse problem that uses input (say force excitation) and output information (accelerations, for instance) to obtain an optimal model to describe the system’s behavior. Since a full instrumentation setup is expensive, situations usually arise where only partial measurements are available. Uniqueness of the solution in these circumstances might not be guaranteed. This paper analyzes the minimum number of measurements required to ensure that only one solution exists for the identification problem of mass, damping and stiffness distributions of shear-type N degrees of freedom linear structures. Three typical configurations of measurements are studied with two distinct theoretical approaches, one based on classical polynomial theory, the other based on reduced order model theory. Both these approaches lead to the conclusion that only one input and one or two output measurements are sufficient to guarantee uniqueness of identification, depending on the selected location of the input measurement. Additionally, the identification of a 3DOF system is carried out analytically with the usage of Sylvester’s Dyalitic Elimination to show that fewer measurements than the ones proposed lead to non-unique identification. This fact is also illustrated with the usage of a recently developed optimization technique, with which convergence to the different solutions is observed depending on the initial estimate used.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In