Full Content is available to subscribers

Subscribe/Learn More  >

Damage in Short-Fiber Composites: From the Microscale to the Continuum Solid

[+] Author Affiliations
Ba Nghiep Nguyen, Brian J. Tucker, Mohammad A. Khaleel

Pacific Northwest National Laboratory

Paper No. IMECE2004-59129, pp. 47-52; 6 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4702-0 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


This paper proposes a multiscale mechanistic approach to damage in short-fiber polymer composites (SFPC). At the microscale, the damage mechanisms are analyzed using micromechanical modeling, and the associated damage variables are defined. The stiffness reduction law dependent on these variables is then established. The macroscopic response is determined using thermodynamics of continuous media, continuum damage mechanics and finite element analysis. Final failure resulting from saturation of matrix microcracks, fiber/matrix debonding, fiber pull-out and breakage is modeled by a vanishing element technique. The model was validated using the experimental data and results from literature, as well as those obtained from a random glass/vinyl ester system.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In