Full Content is available to subscribers

Subscribe/Learn More  >

Finite Element Implementation of a Thermoviscoplastic Model for Ratcheting

[+] Author Affiliations
Rashid K. Abu Al-Rub, George Z. Voyiadjis

Louisiana State University

Paper No. IMECE2004-61734, pp. 37-45; 9 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4702-0 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


A thermoviscoplastic constitutive model is proposed to simulate the uniaxial/multiaxial ratcheting of cyclically stable materials and its finite element implementation is also achieved. The kinematic and isotropic hardening rules used in the proposed model are similar to that developed by Voyiadjis and Abu Al-Rub [1], except for the coupling with temperature and strain-rate effects. The proposed constitutive equations include thermo-elasto-viscoplasticity, a dynamic yield criterion of a von Mises type, the associated flow rules, non-linear strain hardening, strain-rate hardening, and temperature softening. In the finite element implementation of the proposed model new implicit stress integration algorithms are proposed. The proposed unified integration algorithms are extensions of the classical rate-independent radial return scheme to the rate-dependent problems. A new expression of consistent tangent modulus is also derived for rate- and temperature-dependent inelasticity. The proposed model is verified by simulating the uniaxial ratcheting of a metallic material.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In