0

Full Content is available to subscribers

Subscribe/Learn More  >

Formulation of a Gradient Enhanced Coupled Damage-Plasticity Model

[+] Author Affiliations
George Z. Voyiadjis, Robert J. Dorgan

Louisiana State University

Paper No. IMECE2004-59890, pp. 15-22; 8 pages
doi:10.1115/IMECE2004-59890
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4702-0 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

An overview of the formulation of a gradient enhanced continuum coupled damage-plasticity model as a constitutive framework to model the nonlocal response of materials is presented. The formulation uses a thermodynamically consistent framework to introduce material length scales through the gradients of the hardening variables. The development of evolution equations for plasticity and damage is treated in a similar mathematical approach and formulation since both address defects such as dislocations for the former and cracks/voids for the later. The gradient enhancements are investigated as powerful tools for modeling observations at the microscale that are not possible to interpret with classical deformation models. By the introduction of higher order gradients, this model is able to predict the size of localized zones based on material constants, as opposed to local models where the loss of ellipticity causes the localized zones to be mesh dependent. Justification for the gradient theory is given by approximating nonlocal theory through a truncated Taylor expansion.

Copyright © 2004 by ASME
Topics: Plasticity

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In