0

Full Content is available to subscribers

Subscribe/Learn More  >

Micromechanical Modeling of Functionally Graded Composites

[+] Author Affiliations
H. M. Yin, L. Z. Sun

University of Iowa

G. H. Paulino

University of Illinois at Urbana-Champaign

Paper No. IMECE2004-59302, pp. 1-8; 8 pages
doi:10.1115/IMECE2004-59302
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Applied Mechanics
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Applied Mechanics Division
  • ISBN: 0-7918-4702-0 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

A micromechanics-based elastic model is developed for two-phase functionally graded materials with locally pair-wise interactions between particles. While the effective material properties change gradually along the gradation direction, there exist two microstructurally distinct zones: particle-matrix zone and transition zone. In the particle-matrix zone, pair-wise interactions between particles are employed using a modified Green’s function method. By integrating the interactions from all other particles over the representative volume element, the homogenized elastic fields are obtained. The effective stiffness distribution over the gradation direction is further derived. In the transition zone, a transition function is constructed to make the homogenized elastic fields continuous and differentiable in the gradation direction. The model prediction is compared with other models and experimental data to demonstrate the capability of the proposed method.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In