Full Content is available to subscribers

Subscribe/Learn More  >

Compact Actuation Through Magnetorheological Flow Control and Rectification of Magnetostrictive Vibrations

[+] Author Affiliations
David Nosse, Brett Burton, Marcelo Dapino

Ohio State University

Paper No. IMECE2004-61534, pp. 187-195; 9 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Aerospace
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-4700-4 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


There is currently a need for compact actuators capable of producing large deflections, large forces, and broad frequency bandwidth. In all existing transducer materials, large force and broadband responses are obtained at small displacements and methods for transmitting very short transducer element motion to large deformations need to be developed. This paper addresses the development of a hybrid actuator which provides virtually unlimited deflections and large forces through magnetorheological (MR) flow control and rectification of the resonant mechanical vibrations produced by a magnetostrictive Terfenol-D pump. The device is a compact, self-contained unit which produces large work output concurrently with stiffness and damping control and is self-locking when unpowered. To increase the output force, hydraulic advantage is created by implementing a driven piston diameter that is larger than the drive piston. Since the pump operates at high speeds in the low kHz range, a fast-acting MR fluid valve is required. The paper presents a four-port MR fluid valve in which the fluid controls its own flow while carrying the full transducer load. A multi-domain systems model for the coupled dynamics of the valve is presented. A four-port valve was constructed and tested for purposes of proof-of-the-concept validation, model verification and system parameter identification. The combined experimental and model results demonstrate the feasibility of the proposed transducer concept.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In