0

Full Content is available to subscribers

Subscribe/Learn More  >

Model of Eddy Current Damping Mechanism for the Suppression of Beam Vibrations

[+] Author Affiliations
Henry A. Sodano, Jae-Sung Bae, Daniel J. Inman

Virginia Polytechnic Institute and State University

W. Keith Belvin

NASA Langley Research Center

Paper No. IMECE2004-61215, pp. 135-144; 10 pages
doi:10.1115/IMECE2004-61215
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Aerospace
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-4700-4 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

The movement of a conductor through a stationary magnetic field or a time varying magnetic field through a stationary conductor generates electromagnetic forces that can be used to suppress the vibrations of a flexible structure. In the present study, a new electromagnetic damping mechanism is introduced. This mechanism differs from previously developed electromagnetic braking systems and eddy current dampers because the system investigated in the following manuscript uses the radial magnetic flux of a permanent magnet to generate the electromagnetic damping force rather than the flux perpendicular to the magnet’s face as done in other studies. One important advantage of the proposed mechanism is that it is simple and easy to be applied. Additionally, a single magnet can be used to damp the transverse vibrations that are present in many structures. Furthermore, it doesn’t require any electronic devices or external power supplies, therefore functioning as a non-contacting passive damper. A theoretical model of the system is derived using electromagnetic theory, enabling us to estimate the electromagnetic damping force induced on the structure. The proposed eddy current damper was constructed and experiments were performed to verify the precision of the theoretical model. It is found that the proposed eddy current damping mechanism increases the damping ratio by up to 150 times and provides sufficient damping force to quickly suppress the beam’s vibration.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In