0

Full Content is available to subscribers

Subscribe/Learn More  >

In-Situ Fabrication of Composite Piezoelectric Wafer Active Sensors for Structural Health Monitoring

[+] Author Affiliations
Victor Giurgiutiu, Bin Lin

University of South Carolina

Paper No. IMECE2004-60929, pp. 89-95; 7 pages
doi:10.1115/IMECE2004-60929
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Aerospace
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Aerospace Division
  • ISBN: 0-7918-4700-4 | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

Structural health monitoring (SHM) is important for reducing maintenance costs while increasing safety and reliability. Traditionally, structural integrity tests required attachment of sensors to the material surface. This is often a burdensome and time-consuming task, especially considering the size and magnitude of the surfaces measured (such as aircraft, bridges, structural supports, etc.). Temporary sensors are a hassle to install; there are some critical applications where they simply cannot accomplish the task required. Piezoelectric wafer active sensors (PWAS) can be permanently attached to the structure and offer a permanent sensor solution. Existing ceramic PWAS, while fairly accurate when attached correctly to the substance, may not provide the long term durability required for SHM. The bonded interface between the PWAS and the structure is often the durability weak link. Better durability may be obtained from a built-in sensor that is incorporated into the material. This paper describes the work on the in-situ fabrication of PWAS using a piezoelectric composite approach. The piezoelectric composite was prepared by mixing small lead zirconate titanate (PZT) particles in an epoxy resin matrix; the mixture was then directly applied onto the surface of a host structure using a designed mask. The curing of the piezo composite was carried out at elevated temperature. After curing, the cured composite was sanded down to the desired thickness. Finally, the piezo composite was poled under a high electric field to activate the piezoelectric effect. The resulting in-situ composite PWAS was utilized as a sensor for dynamic vibration and impact. Characterization of the in-situ composite PWAS on aluminum structure have been recorded and compared with ceramic PWAS before and after polarization. To evaluate the performance of the in-situ composite PWAS, both vibration and impact tests were conducted. In-situ composite PWAS are believed to be a good candidate for reliable low-cost sensor fabrication for SHM.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In