Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of Synthetic Jets From Rectangular Orifices

[+] Author Affiliations
Ivana M. Milanovic

University of Hartford, West Hartford, CT

Khairul B. M. Q. Zaman

NASA Glenn Research Center, Cleveland, OH

Paper No. HT-FED2004-56825, pp. 891-901; 11 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 4
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4693-8 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Results of an experimental investigation on isolated synthetic jets in crossflow from rectangular orifices of different aspect ratio and orientation are presented. Three aspect ratios, AR = 4, 8, and 16, with pitch α = 90°, were investigated. Additionally, the AR = 8 case was pitched at 20°. The yaw angle, β, was varied through 0°, 10°, 45° and 90°. All orifices had same exit area and the data were compared with synthetic as well as steady jet from a circular orifice of same area. Hotwire measurements were performed to obtain all three components of mean velocity and turbulent stresses. Data were acquired for momentum-flux ratio up to J = 50. Distributions of time- and phase-averaged data were obtained on the cross sectional plane at x/D = 0.5, 5 and 10, as well as on the axial plane of the symmetry. Qualitative flowfield similarity between synthetic and steady jets is observed. However, high-momentum ‘cap’ above the low-momentum ‘dome’, characteristic of steady jets, does not necessarily appear in the synthetic jet. The position and shape of the high-momentum region depend on the distance from the orifice, pitch, yaw as well as momentum-flux ratio. Consequently, the location of the minimum velocity in the ‘dome’ measured at the plane of symmetry, ymin , is adopted as a reference for penetration estimate and trajectory comparison. For AR = 16, the dome is the largest in area with maximum velocity deficit. However, the penetration is somewhat higher for AR = 4. Increase in yaw reduces the spatial extent of the dome and the penetration height but augments the velocity deficit. At low J the dome is connected to the boundary layer and traces of the cap of high momentum fluid are visible above it. Increase in J lifts the dome and reorganizes the high-momentum fluid around its perimeter, eventually bringing it underneath. Phase-averaged data document dynamic topological changes within the cycle. Phase-averaged streamwise velocity contours on the cross-sectional plane exhibit behavior commensurate with that seen in time-averaged data at various J.

Copyright © 2004 by ASME
Topics: Jets , Orifices



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In