0

Full Content is available to subscribers

Subscribe/Learn More  >

Large-Eddy Turbulent Flow Simulation of an Industrial Helical Static Mixer

[+] Author Affiliations
Ramin K. Rahmani, Theo G. Keith, Anahita Ayasoufi

University of Toledo, Toledo, OH

Paper No. HT-FED2004-56021, pp. 775-784; 10 pages
doi:10.1115/HT-FED2004-56021
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 4
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4693-8 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

Viscous liquids have to be homogenized in continuous operations in many branches of processing industries; and therefore, fluid mixing plays a critical role in the success or failure of many industrial processes. Consequences of improper mixing include non-reproducible processing conditions and lowered product quality, resulting in the need for more elaborate downstream purification processes and increased waste disposal costs. The range of practical flow Reynolds numbers for helical static mixers in industry is usually from very small (Re ≈ 0) to moderate values (e.g. Re = 5,000). However, it has been found that the flow regime within helical static mixers is turbulent for relatively low Reynolds numbers, compared to the flow inside a pipe with no mixing elements present. This paper extends previous studies by the authors on the industrial helical static mixer. Its purpose is to present an improved understanding of the turbulent flow pattern for single-phase liquids through the mixer. Three-dimensional finite volume simulations are used to study the performance of the mixer using different turbulent models. Large-Eddy Simulation (LES) model is applied to the flow in an industrial helical static mixer to calculate the flow velocities, pressure drops, etc. Using a variety of predictive tools, the mixing results are obtained. Also, the accuracy and global performance of several different turbulent models are compared against the LES model.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In