Full Content is available to subscribers

Subscribe/Learn More  >

Geometry Effects on the Flow Rectification of a Dynamic Micro Diffuser: A Numerical Investigation

[+] Author Affiliations
Chen-Li Sun, Kun Hao Huang

National Taiwan University of Science and Technology, Taipei, Taiwan

Paper No. HT-FED2004-56710, pp. 607-612; 6 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 4
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4693-8 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


In this study, a numerical investigation is presented to characterize the geometry effects on the transient behaviors of a micro diffuser pump. Four parameters of the dynamic diffuser pump, half-angle, depth, length, and excitation frequency, are considered. A time-dependent sinusoidal pressure with fixed pressure amplitude (200 Pa) is applied at the inlet as the boundary condition. The results from the numerical analysis have been quantified in terms of average volumetric flow rate. Despite the corresponding low Reynolds numbers (Re < 10), circulation is observed for all tested half-angles. When the direction of pressure gradient switches, fluid flows against the pressure gradient and triggers flow separation near wall. The vortex then migrates from wall toward the center of diffuser with time. For 5° ≤ θ ≤ 35°, diffusers with larger half-angles show better rectification effects. For θ gt; 35°, net flow rate is nearly independent of half-angle. Shorter and deeper diffuser results in larger net flow rate regardless of its half-angle. The increase of the excitation frequency diminishes the flow rectification in micro diffuser.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In