0

Full Content is available to subscribers

Subscribe/Learn More  >

The Metal-Dielectric Transition in Short-Pulse Laser Ablation of Metals

[+] Author Affiliations
Cristian Porneala, David A. Willis

Southern Methodist University, Dallas, TX

Paper No. HT-FED2004-56645, pp. 537-543; 7 pages
doi:10.1115/HT-FED2004-56645
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 4
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4693-8 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

Phase explosion is an explosive liquid-vapor phase change that occurs during short pulse laser ablation. Phase explosion results from homogenous vapor nucleation in a superheated liquid phase as the surface temperature approaches the thermodynamic critical temperature, Tc . For a metastable liquid, the upper limit of superheating is approximately 0.9Tc , above which the rate of homogeneous nucleation rises dramatically. Prior to reaching the superheat limit however, a “dielectric transition” is expected to occur at approximately 0.8Tc . The dielectric transition is the transition of an electrically conductive material to a non-conducting state due to large fluctuations in material properties. One consequence of the dielectric transition is that the material will become semi-transparent. Until now, little work has been performed to understand the role of the dielectric transition in laser ablation, and many questions remain about how the surface will rise above 0.8Tc if the surface is semitransparent and only weakly absorbing. This work investigates the role of the dielectric transition with a one-dimensional numerical model for heat transfer and phase change and includes the effect of the metal to dielectric transition. The model is used to simulate heating of aluminum by a Nd:YAG laser with a 7 nanosecond pulse width (FWHM) at the fundamental wavelength of 1064 nm. Calculations of the transient temperature field, melt depth, and depth of the dielectric layer are obtained. Estimates of the absorption coefficient of a metal surface above the metal-dielectric transition are made from correlations found in the research literature. The value of the absorption coefficient is shown to be a critical parameter for determining the energy density required to reach 0.9Tc .

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In