Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Study on Skin Friction Reduction With Micro-Blowing

[+] Author Affiliations
Song Liu, Hongmin Li, Minel J. Braun

University of Akron, Akron, OH

Paper No. HT-FED2004-56218, pp. 333-337; 5 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 4
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4693-8 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Reducing skin friction, such as friction on a car hood or a plane wing, can significantly reduce the drag force and decrease specific fuel consumption. Many techniques and methods have been tried. The Micro-blowing Technique (MBT) is an innovative way to reduce skin friction. Suggested by early research in boundary layer injection in 1950s, MBT was actually brought to effective use in 1994 by Hwang [1]. The basic idea is that by blowing fluid, same as or different from the mainstream flow, at an angle with that of the main flow, a decrease in the velocity gradient at the wall can be achieved, and thus the shear stress on the surface is reduced. Although the experimental data on boundary layer with micro blowing show a significant friction reduction, the mechanism of MBT is still not well understood and thus its full range of application is not yet established. In this paper, we further the understanding of the MBT mechanism. An experimental system is set up to visualize the flow structure on a plate with and without micro blowing in a tunnel. A long distance microscope is combined with a Full Field Flow Tracking visualization method in order to elucidate the nature of the flow interaction and mixing between the blowing flow and the main flow. The flow above the porous plates is visualized and velocities both in the blowing layer immediately adjacent to the plate and in the main flow are quantified using the PIV procedure. The flow and shear stress analysis shows that MTB has significantly different effects on a flow with a boundary layer and fully developed internal flows.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In