0

Full Content is available to subscribers

Subscribe/Learn More  >

Performance Evaluation of Liquid Flow With NPCM in Microchannels

[+] Author Affiliations
K. Q. Xing, Y.-X. Tao

Florida International University, Miami, FL

Y. L. Hao

Southeast University, Nanjing, China

Paper No. HT-FED2004-56073, pp. 283-292; 10 pages
doi:10.1115/HT-FED2004-56073
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 4
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4693-8 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

A two-phase, non-thermal-equilibrium based model is applied to the numerical simulation of laminar flow and heat-transfer characteristics of suspension with nano-size phase change material (NPCM) particles in a microchannel. The model solves the conservation of mass, momentum and thermal energy equations for liquid and particle phases separately. The study focuses on the parametric study of optimal conditions where heat transfer is enhanced with an increase in fluid power necessary for pumping the two-phase flow. The main contribution of NPCM particles to the enhancement of heat transfer in a micro-size tube is to increase the effective thermal capacity and utilize the latent heat effect under the laminar flow condition. An effectiveness factor εeff is defined to evaluate the heat transfer enhancement compared to the single phase flow heat transfer and is calculated under different wall heat fluxes and different Reynolds numbers. The comparison is also made to evaluate the performance index (PI); i.e., the ratio of total heat transfer rate to fluid flow power (pressure drop multiplied by volume flow rate) between NPCM suspension flow and pure water single-phase flow. The results show that for a given Reynolds number, there exists an optimal heat flux under which the εeff value is the greatest. In general, the NPCM suspension flow with phase change has a significantly higher performance index than the pure-fluid flow.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In