0

Full Content is available to subscribers

Subscribe/Learn More  >

Stochastic Heat Transfer in Fins and Transient Cooling Using Polynomial Chaos and Wick Products

[+] Author Affiliations
A. F. Emery, D. Bardot

University of Washington, Seattle, WA

Paper No. HT-FED2004-56740, pp. 171-178; 8 pages
doi:10.1115/HT-FED2004-56740
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 4
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4693-8 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

Stochastic heat transfer problems are often solved using a perturbation approach which yields estimates of mean values and standard deviations for properties and boundary conditions that are random variables. Methods based on polynomial chaos and Wick products can be used when the randomness is a random field or white noise to describe specific realizations and to determine the statistics of the response. Polynomial chaos is best suited for problems in which the properties are strongly correlated, while the Wick product approach is most effective for variables containing white noise components. A transient lumped capacitance cooling problem and a one-dimensional fin are analyzed by both methods to demonstrate their usefulness.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In