Full Content is available to subscribers

Subscribe/Learn More  >

Feedforward Laser Power Specification for Uniform Cooling of Thin-Walled Parts

[+] Author Affiliations
Umesh A. Korde, Michael A. Langerman, Gregory A. Buck, Vojislav D. Kalanovic

South Dakota School of Mines and Technology

Paper No. IMECE2004-61707, pp. 565-573; 9 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4711-X | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


This paper presents results from ongoing research on thermal-model based feedforward specification of laser power in a laser powder deposition process. The goal of this algorithm is to compute, before deposition of a layer, the laser power sequence and distribution that would produce a desired temperature distribution over that layer. This in turn will enable uniform cooling of the layer and avoid build up of residual stresses. In this paper, results based on a simplified thermal model and second-order spatial discretization are presented. Two types of discretization in the time domain are examined. The matrix-exponential-based discretization is expected to be more accurate at lower laser speeds. The desired laser power sequence and the resulting temperature histories for a prescribed laser speed are discussed within the context of a thin-walled part.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In