0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical and Experimental Investigation of the Melt Casting of Explosives

[+] Author Affiliations
Dawei Sun, Suresh V. Garimella

Purdue University

Sanjeev Singh, Neelam Naik

U.S. Army Armaments Research, Development and Engineering Center

Paper No. IMECE2004-59338, pp. 399-409; 11 pages
doi:10.1115/IMECE2004-59338
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4711-X | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

Melt casting of energetic materials is investigated, and a numerical model formulated for the analysis of the coupled fluid flow, heat transfer, and stress fields involved in this phase-change process. The numerical model is based on a conservative multi-block control volume method. The SIMPLE algorithm is employed along with an enthalpy method approach to model the solidification process. Results from the model are verified against experimental data as well as published numerical results for simplified cases. In the melt casting of RDX-binder mixtures, the very high viscosity of the melt leads to the influence of melt convection being very limited. The impact of different cooling conditions on the velocity, temperature and stress distributions, as well as on the solidification time, are discussed. The model can be used to improve the quality of cast explosives, by optimizing and controlling the processing conditions.

Copyright © 2004 by ASME
Topics: Casting , Explosives

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In