Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Conductivity Measurement of the ZnS-SiO2 Dielectric Films for Optical Data Storage Applications

[+] Author Affiliations
Chun-Teh Li, Yizhang Yang, Sadegh M. Sadeghipour, Mehdi Asheghi

Carnegie Mellon University

Paper No. IMECE2004-62150, pp. 225-229; 5 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4711-X | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


The amorphous/crystalline phase formation during writing or erasure of the written marks, in the rewritable phase change (PC) optical recording media, is controlled by the temperature distribution in the media and its variation with time. Temperature distribution, on the other hand, strongly depends on the thermal properties of its constituent layers in particular the ZnS-SiO2 dielectric layer that separates the phase change media from the substrate and aluminum heat sink. The reported values for the thermal conductivity of thin dielectric layers are however limited in the literature. In this manuscript, we report thermal conductivity data for dielectric layers of thickness near 50, 100 and 225 nm using the steady sate Joule-heating and electrical resistance thermometry technique. The boundary resistance at the interface is estimated to be near 7.0×10−8 m2 K W−1 , which would limit the thermal time constant for cooling of PC layer and potentially impact data rate and jitter in optical recording technology.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In