0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhanced Heat Transfer Through the Use of Nanofluids in Forced Convection

[+] Author Affiliations
Daniel J. Faulkner, Justin J. Davidson, Reza Shekarriz

MicroEnergy Technologies

David R. Rector

Pacific Northwest National Laboratory

Paper No. IMECE2004-62147, pp. 219-224; 6 pages
doi:10.1115/IMECE2004-62147
From:
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4711-X | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME

abstract

Much attention has been paid in recent years to the use of nanoparticle suspensions for enhanced heat transfer. The majority of this work has focused on the thermal conductivity of these nanofluids, which can be as much as 2.5 times higher than that of the plain base fluid. The present work moves beyond measurements of non-flowing liquids, to explore the role that nanofluids can play in enhancing convective heat transfer within microscale channels. A unique pseudo-turbulent flow regime is postulated, which simulates turbulent behavior at very low Reynolds numbers, in what are nominally laminar flows. The resulting fluid mixing has the potential to raise the average convective heat transfer coefficient within the channel. Numerical modeling, using the lattice Boltzmann method, confirms the existence of the pseudo-turbulent flow regime. Finally, experimental results are presented which demonstrate a significant heat transfer enhancement when using nanofluids in forced convection. The current results are especially relevant to microchannel heatsinks, where the low Reynolds numbers impose limitations on the maximum Nusselt number achievable.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In