Full Content is available to subscribers

Subscribe/Learn More  >

The Effect of Inclined Vertical Slats on the Free Convective Heat Transfer Rate From an Isothermal Heated Vertical Surface

[+] Author Affiliations
Patrick H. Oosthuizen, Lan Sun

Queen’s University

David Naylor

Ryerson University

Paper No. IMECE2004-61382, pp. 181-190; 10 pages
  • ASME 2004 International Mechanical Engineering Congress and Exposition
  • Heat Transfer, Volume 3
  • Anaheim, California, USA, November 13 – 19, 2004
  • Conference Sponsors: Heat Transfer Division
  • ISBN: 0-7918-4711-X | eISBN: 0-7918-4178-2, 0-7918-4179-0, 0-7918-4180-4
  • Copyright © 2004 by ASME


Free convective heat transfer from a wide heated vertical isothermal plate with adiabatic surfaces above and below the heated surface has been considered. There are a series of equally spaced vertical thin, flat surfaces (termed “slats”) near the heated surface, these surfaces being, in general, inclined to the heated surface. The slats are pivoted about their center-point and thus as their angle is changed, the distance of the tip of the slat from the plate changes. The temperature of the vertical isothermal surfaces has been assumed to be greater than the ambient temperature. Various cases have been considered to examine the effect of the geometry of the adiabatic surfaces above and below the heated plate, the effect of heat conduction in the slats and the effect of heat generation in the slats. The situation considered is an approximate model of a window with a vertical blind, the particular case where the window is hotter than the room air being considered. The heat generation that can occur in the slats is then the result of solar energy passing through the window and being absorbed by the slats. The flow has been assumed to be laminar and steady. Fluid properties have been assumed constant except for the density change with temperature that gives rise to the buoyancy forces. The governing equations have been written in dimensionless form and the resulting dimensionless equations have been solved using a commercial finite-element package. Because of the application that motivated the study, results have only been obtained for a Prandtl number of 0.7. The effect of the other dimensionless variables on the mean dimensionless heat transfer rate from the heated surface has been examined.

Copyright © 2004 by ASME
Topics: Convection



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In