0

Full Content is available to subscribers

Subscribe/Learn More  >

An Assessment of Five Turbulence Models in Predicting Turbulent Separation

[+] Author Affiliations
Robert E. Spall, Warren F. Phillips, Nick Alley

Utah State University, Logan, UT

Paper No. HT-FED2004-56813, pp. 1277-1284; 8 pages
doi:10.1115/HT-FED2004-56813
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

Four different turbulence models were employed to predict the flow over a wall-mounted Glauert-Goldschmied body. The models evaluated include: 1) two-layer k–ε, 2) shear stress transport, 3) low-Reynolds number k–ω, 4) Spalart-Allmaras, and 5) v2 −f. Calculations were performed for both an uncontrolled case, and a controlled-flow case which used steady suction through a slot located at the 65% chord station. The flow conditions include a freestream Mach number of approximately 0.1, and a chord Reynolds number of just under 1 million. For each model, the numerical results over predicted the experimentally determined re-attachment length. An examination of streamwise velocity profiles at several stations downstream of the trailing edge revealed considerable variation in the predictions of the five turbulence models.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In