0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Bipolar Plate Cooling on Fuel Cell Heat Generation

[+] Author Affiliations
M. Trent Goodman, S. R. McNeill, J. W. Van Zee, S. Shimpalee, J. A. Khan

University of South Carolina, Columbia, SC

Paper No. HT-FED2004-56707, pp. 1197-1209; 13 pages
doi:10.1115/HT-FED2004-56707
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

Heat generation inside the fuel cell is dependent on current densities at the fuel cell’s electrolyte membrane. When the moisture levels are too high, there is a flooding of the electrolyte membrane which prevents the hydrogen and oxygen gases from reaching the membrane. Whereas if the moisture levels are too low then an increase in ohmic loses across the membrane results in decreased energy production. A numerical study was performed to understand how the fluid velocity and thermal conductivity of the bipolar plates affects energy production inside the fuel cell. This was accomplished by using two models, one for the fuel cell and the other for the bipolar plate. The fuel cell model included both the conductive and convective heat transfer as well as the electrochemical heat generation. This model included calculations for determining moisture content which was included in the electrochemical reaction. After setting the model’s geometric configuration and fuel flow rates, this model required the temperature of the bipolar plate model as its input. The bipolar plate mode included the conductive and convective heat transfer with a fluid flowing through a set micro channel configuration. After setting its geometric configuration and flow rates, its input was the heat flux from the fuel cell model. An iterative approach was used to reach steady state convergence between the two models. The effect of varying the flow rates through the bipolar plate on power production was studied. These studies show how low flow rates inhibit power production.

Copyright © 2004 by ASME
Topics: Heat , Cooling , Fuel cells

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In