Full Content is available to subscribers

Subscribe/Learn More  >

Rheological Aspects of Drops Deforming in Finite Reynolds Number Oscillatory Extensional Flows

[+] Author Affiliations
Xiaoyi Li, Kausik Sarkar

University of Delaware, Newark, DE

Paper No. HT-FED2004-56648, pp. 1137-1143; 7 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


The evolving morphology of droplets in a flowing emulsion determines its rheological properties. A two-way interaction between drops and the flow governs the rheological stresses arising from drop deformation. In this paper, the rheology of droplet emulsions under oscillatory extensional flow is investigated using direct numerical simulation (DNS). The deformation of a three dimensional drop is simulated. The rheological responses are related with the interface morphology using Bachelor’s stress formulation [6]. Detailed investigation of the variation of parameters such as interfacial tension, flow frequency and inertia displayed complex non-Newtonian response of the emulsion that will have broad implication in industrial applications. The results are explained and discussed with a simple model for the drop dynamics.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In