Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of the Tip Clearance Flow for an Axial Flow Fan Rotor Using a PIV System

[+] Author Affiliations
Xiaocheng Zhu, Wanlai Lin, Zhaohui Du

Shanghai Jiaotong University, Shanghai, China

Paper No. HT-FED2004-56646, pp. 1127-1136; 10 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


The flow field in the tip region of an axial ventilation fan is investigated with a PIV (Particle Image Velocimeter) system at the design condition. Characteristics of a ventilation fan are an extreme low-pressure difference and a large tip clearance with a low rotating speed. Flow fields with three different tip clearances are surveyed on three different circumferential planes, respectively. The phase-locked average method is used to investigate the generation and the development of a tip leakage vortex. The result from PIV system is compared with that from a PDA (Particle Dynamics Anemometer) system. Both data are in good agreement. The structure of the tip leakage vortex for the rotor is illustrated. The characteristic of a leakage vortex is described in both velocity vectors and vortical contours. It is found that the tip leakage flow for a low speed and a low pressure ventilation fan also has a chance to roll up into a discrete vortex at three different tip clearances, which is similar to high speed and high-pressure compressors and turbines. When the tip clearance increases, the scope and the location variation for the tip leakage vortex increase. Finally, the trajectories of the tip leakage vortex by the experimental measurement are compared with predictions from the existing models for high speed and high-pressure compressors and turbines. A good agreement is obtained.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In