Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation for Mixed Convective Flow Over a Three-Dimensional Horizontal Backward Facing Step

[+] Author Affiliations
J. G. Barbosa Saldana, N. K. Anand, V. Sarin

Texas A&M University, College Station, TX

Paper No. HT-FED2004-56532, pp. 1031-1042; 12 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Laminar mixed convective flow over a three-dimensional horizontal backward-facing step heated from below at a constant temperature was numerically simulated using a finite volume technique and the most relevant hydrodynamic and thermal features for air flowing through the channel are presented in this work. The channel considered in this work has an aspect ratio AR = 4, and an expansion ratio ER = 2, while the total length in the streamwise direction is 52 times the step height (L = 52s) and the step length is equal to 2 times the step height (l = 2s). The flow at the duct entrance was considered to be hydro-dynamically fully developed and isothermal. The bottom wall of the channel was subjected to a constant high temperature while the other walls were treated to be adiabatic. The step was considered to be a thermal conductive block.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In