0

Full Content is available to subscribers

Subscribe/Learn More  >

Comparison of CFD Calculations With Experimental Results for the YMP Scaled Natural Convection Tests

[+] Author Affiliations
Sandra Dalvit Dunn, John Del Mar

Science and Engineering Associates, Inc., Santa Fe, NM

Stephen W. Webb, Michael T. Itamura, Nicholas D. Francis

Sandia National Laboratories, Albuquerque, NM

Paper No. HT-FED2004-56409, pp. 839-847; 9 pages
doi:10.1115/HT-FED2004-56409
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

The Yucca Mountain Project (YMP) is currently designing a geologic repository for high level nuclear waste. The design encompasses two distinct phases, the pre-closure period where temperatures within the repository will be controlled by active ventilation, and the post-closure period where the repository will be sealed. A prerequisite for designing the repository is the ability to both understand and control the heat generated from the decay of the nuclear waste. This decay heat affects the performance of both the waste packages and the emplacement drift. The ability to accurately model the complex heat transfer within the repository is critical to the understanding of the repository performance. Currently, computational fluid dynamics codes are being used to model the post-closure performance of the repository. Prior to using the codes on the project they were required to be thoroughly validated. Eight pilot-scale tests were performed at the Department of Energy North Las Vegas Atlas Facility to evaluate the processes that govern thermal transport in an environment that scales to the proposed repository environment during the post closure period. The tests were conducted at two geometric scales (25 and 44% of full scale), with and without drip shields, and under both uniform and distributed heat loads. The tests provided YMP specific data for model validation. A separate CFD model was developed for each of the four test configurations. The models included the major components of the experiment, including the waste packages (heated steel canisters), invert floor, and emplacement drift (insulated concrete pipe). The calculated model temperatures of the surfaces and fluids, and velocities, are compared with experimental data.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In