0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling an RF Cold Crucible Induction Heated Melter With Subsidence

[+] Author Affiliations
Grant Hawkes

Idaho National Engineering and Environmental Laboratory (INEEL), Idaho Falls, ID

Paper No. HT-FED2004-56376, pp. 767-778; 12 pages
doi:10.1115/HT-FED2004-56376
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

A method to reduce radioactive waste volume that includes melting glass in a cold crucible radio frequency induction heated melter has been investigated numerically. The purpose of the study is to correlate the numerical investigation with an experimental apparatus that melts glass in the above mentioned melter. Unique to this model is the subsidence of the glass as it changes from a powder to molten glass and drastically changes density. A model has been created that couples the magnetic vector potential (real and imaginary) to a transient startup of the melting process. This magnetic field is coupled to the mass, momentum, and energy equations that vary with time and position as the melt grows. The coupling occurs with the electrical conductivity of the glass as it rises above the melt temperature of the glass and heat is generated. Natural convection within the molten glass helps determine the shape of the melt as it progresses in time. An electromagnetic force is also implemented that is dependent on the electrical properties and frequency of the coil. This study shows the progression of the melt shape with time along with temperatures, power input, velocities, and magnetic vector potential. Coupled to all of this is a generator that will be used for this lab sized experiment. The coupling with the 60 kW generator occurs with the impedance of the melt as it progresses and changes with time. A power controller has been implemented that controls the primary coil current depending on the power that is induced into the molten glass region.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In