0

Full Content is available to subscribers

Subscribe/Learn More  >

The Role of Inflow Turbulence for Large Eddy Simulation on Modelling of Bluff Body Flows

[+] Author Affiliations
Mustafa Tutar

Mersin University, Mersin, Turkey

Ismail Celik, Ibrahim Yavuz

West Virginia University, Morgantown, WV

Paper No. HT-FED2004-56206, pp. 451-460; 10 pages
doi:10.1115/HT-FED2004-56206
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

A random flow generation (RFG) technique for large eddy simulation (LES) is successfully adopted into a finite element based conventional fluid flow solver to generate the required inflow/initial turbulence boundary conditions for the LES computations of viscous incompressible turbulent flow over a two-dimensional circular cylinder at Reynolds number of 140,000. The effect of generated turbulent inflow boundary conditions on the transitional nature of the flow regime is studied during the early development of the very near wake of the cylinder. The numerical results obtained from the Smagorinsky sub-grid scale (SGS) model based simulations are compared with each other and with the experimental data for varying degree of inflow turbulence to discuss the issues such as the inflow turbulence effects on the time evolution of the local flow structures in the very near wake and on the integral flow parameter predictions such as separation points, transient fluid forces that the cylinder experience, and the local flow resolutions in the vicinity of the cylinder wall and the free shear layer. The influence of mesh resolution on the quality of the predicted results is also investigated. The comparison of present LES results with those of case without inflow turbulence and the experimental data indicates that the present LES approach coupled with the suggested RFG technique enhance the resolution of the turbulent flow and can be used with a confidence for a bluff body problem where the inflow turbulence is significant.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In