Full Content is available to subscribers

Subscribe/Learn More  >

Computations of Flow Structure and Heat Transfer in a Dimpled Channel at Low to Moderate Reynolds Number

[+] Author Affiliations
Wilfred V. Patrick, Danesh K. Tafti

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. HT-FED2004-56171, pp. 401-412; 12 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Time-accurate calculations are used to investigate the three-dimensional flow structure and understand its influence on the heat transfer in a channel with concave indentations on one wall. A dimple depth to channel height ratio of 0.4 and dimple depth to imprint diameter ratio of 0.2 is used in the calculations. The Reynolds number (based on channel height) varies from Re = 280 in the laminar regime to Re = 2000 in the early turbulent regime. Fully developed flow and heat transfer conditions were assumed and a constant heat flux boundary condition was applied to the walls of the channel. In the laminar regime, the flow and heat transfer characteristics are dominated by the recirculation zones in the dimple with resulting augmentation ratios below unity. Flow transition is found to occur between Re = 1020 and 1130 after which both heat transfer and friction augmentation increase to values of 3.22 and 2.75, respectively, at Re = 2000. The presence of large scale vortical structures ejected from the dimple cavity dominate all aspects of the flow and heat transfer, not only on the dimpled surface but also on the smooth wall. In all cases the thermal efficiency using dimples was found to be significantly larger than other heat transfer augmentation techniques currently employed.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In