0

Full Content is available to subscribers

Subscribe/Learn More  >

Large Eddy Simulations of High Speed Flows

[+] Author Affiliations
C. Kannepalli, S. Arunajatesan, S. M. Dash

Combustion Research and Flow Technology, Inc., Pipersville, PA

W. H. Calhoon, Jr.

Combustion Research and Flow Technology, Inc., Huntsville, AL

Paper No. HT-FED2004-56162, pp. 379-390; 12 pages
doi:10.1115/HT-FED2004-56162
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

RANS models are required for the prediction of scalar fluctuations and turbulent transport in the high speed flow regime. These models will have application, for example, in missile exhaust plume signature analyses, scramjet combustors and other important areas. However, experimentally derived scalar fluctuation data needed to develop these models for the high speed flow regime is not readily available due to the inability of relevant experimental measurement techniques (e.g. hot wires) to cope with this flowfield environment. This issue poses significant difficulties for model development in this flow regime. Researchers have used different values for the turbulent Prandtl and Schmidt numbers but no consensus has been reached as to what these values have to be for high speed flows. To address this difficulty, a two part program has been initiated to fill the data gap and thus facilitate model development. Part I of this program involves the collection of LES data over a wide range of conditions. Part II involves the use of these data to evaluate and develop RANS tools to improve predictive capabilities. This paper presents results and findings of Part I of this program. Several flow fields of relevance to the problems mentioned above are studied. These include classical unit problems such as high and low Mach number shear layers, boundary layers and separated flows such as compression corner flows. In the process we are gradually extending the applicability of LES to more complex flows and at the same time enabling RANS model development by facilitating flow databases in the high speed flight regime. The findings of this study elucidate the effects of compressibility on the character of mean scalar profiles, variations in turbulent Prandtl number, and on scalar rms fluctuations.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In