Full Content is available to subscribers

Subscribe/Learn More  >

Turbulent Heat Transfer in Plane Couette Flow

[+] Author Affiliations
Phuong M. Le, Dimitrios V. Papavassiliou

University of Oklahoma, Norman, OK

Paper No. HT-FED2004-56130, pp. 299-303; 5 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Direct numerical simulations of a turbulent plane Couette flow are combined with Lagrangian scalar tracking of thermal markers that are released in the flow field to determine the behavior of an instantaneous scalar line source located at the wall. The resulting probability density functions are used to calculate the behavior of instantaneous line sources of heat at the wall of the channel. The method is applied for fluids with a range of molecular Prandtl number, Pr, between 0.1 and 15,000, giving emphasis on the high Pr cases. The issues that are investigated are the effect of the Pr on turbulent dispersion, and the effect of the turbulence structure on turbulent heat transfer. The flow field for plane Couette flow is fundamentally different than that for channel flow, because the whole Couette flow domain is a constant stress region that forms an extensive logarithmic layer. For an instantaneous source at the wall, it is found that in both the channel flow and the Couette flow cases there are similar stages of development of the marker cloud that depend on the Prandtl number. This dependence becomes stronger as the Pr increases. However, this similarity is only qualitative.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In