Full Content is available to subscribers

Subscribe/Learn More  >

Applications of the Lagrangian Dynamic Model in LES of Turbulent Flow Over Surfaces With Heterogeneous Roughness Distributions

[+] Author Affiliations
Elie Bou-Zeid, Charles Meneveau, Marc B. Parlange

Johns Hopkins University, Baltimore, MD

Paper No. HT-FED2004-56127, pp. 291-298; 8 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 2, Parts A and B
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4691-1 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


We study turbulent flow over surfaces with varying roughness scales, using large eddy simulation (LES). The goal is to use LES results to formulate effective boundary conditions in terms of effective roughness height and blending height, to be used for RANS. The LES are implemented with the dynamic Smagorinsky model based on the Germano identity. However, as is well-known, when this identity is applied locally, it yields a coefficient with unphysically strong fluctuations and averaging is needed for better realism and numerical stability. The traditional approach consists of averaging over homogeneous directions, for example horizontal planes in channel flow. This requirement for homogeneous directions in the flow field and the concomitant inability to handle complex geometries renders the use of this model questionable in studying the effect of surface heterogeneity. Instead, a new version of the Lagrangian dynamic subgrid-scale (SGS) model [1] is implemented. A systematic set of simulations of flow over patches of differing roughness is performed, covering a wide range of patch length scales and surface roughness values. The simulated mean velocity profiles are analyzed to identify the height of the blending layer and used to measure the effective roughness length. Extending ideas introduced by Miyake [2] and Claussen [3], we have proposed a simple expression for effective surface roughness and blending height knowing local surface patch roughness values and their lengths [4]. Results of the model agreed well with the LES results when the heterogeneous surface consisted of patches of equal sizes. The model is tested here for surfaces with patches of different sizes.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In