0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Capillary Flow in Rounded Corners

[+] Author Affiliations
Yongkang Chen, Mark M. Weislogel

Portland State University, Portland, OR

Paper No. HT-FED2004-56253, pp. 935-944; 10 pages
doi:10.1115/HT-FED2004-56253
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

The problem of capillary flow in interior corners that are rounded is re-visited analytically in this work. By the appropriate geometric scaling, and through the introduction of a new parameter that features the roundedness of the corner, the Navier-Stokes equation is reduced to a convenient form for both numerical and analytical solution. The scaling and analysis of the problem is expected to significantly reduce the reliance on numerical data for such problems, and the design process can be both shortened and improved as a result. For capillary flows of perfect wetting fluids in the rounded corner with an advancing tip, a finite interfacial curvature related to the corner roundedness results at the tip. Accordingly, an outer and inner region of the flow is suggested based on the impact of the corner roundedness on the flow. In this study, asymptotic solutions of the geometrical ‘cross-flow’ problem for the outer region are sought under several constraints and are expected to narrowly bracket parallel numerical solutions. A complete understanding of the flow will be obtained only after the cross-flow problem for the inner region is solved. However, for the flow in the outer region a similarity solution is obtained and presented that reveals how roundedness retards the flow.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In