0

Full Content is available to subscribers

Subscribe/Learn More  >

An Elastic Exoskeleton for Assisting Human Running

[+] Author Affiliations
Michael S. Cherry, Sridhar Kota, Daniel P. Ferris

The University of Michigan, Ann Arbor, MI

Paper No. DETC2009-87355, pp. 727-738; 12 pages
doi:10.1115/DETC2009-87355
From:
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 33rd Mechanisms and Robotics Conference, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4904-0 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME

abstract

This paper presents the design and preliminary evaluation of an elastic lower-body exoskeleton (eExo). Human legs behave in a spring-like fashion while running. We selected a design that relied solely on material elasticity to store and release energy during the stance phase of running. The exoskeleton included a novel knee joint with a cam and a Bowden cable transferring energy to and from a waist-mounted extension spring. We used a friction-lock clutch controlled by hip angle via a pneumatic cylinder to release the cable during swing phase for free movement of the leg. The design also incorporated a composite leaf spring to store and release energy in the distal portion of the exoskeleton about the foot and ankle. Preliminary test data for our target subject showed that his typical leg deflection was 0.11 m with leg stiffness of 16 kN/m while running at 3.0 m/s. We used these values to set the desired stiffness (60±15% of the normal leg stiffness, or 9.6±2.4 kN/m) and deflection (0.11 m) of the exoskeleton. We created simplified multi-body and full finite element quasi-static models to achieve the desired system stiffness and validate our results, respectively. The final design model had an overall stiffness of 7.3 kN/m, which was within the desired range. We fabricated a single-leg prototype of the exo–skeleton that weighed 7.1 kg. We tested the exoskeleton stiffness quasi-statically and found a stiffness of 3.6 kN/m. While running, the exoskeleton provided ∼30% of the total leg stiffness for two subjects. Although the stiffness was lower than desired, the fabricated prototype demonstrated the ability of a quasi-passive exoskeleton to provide a significant portion of an individual’s leg stiffness while running.

Copyright © 2009 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In