Full Content is available to subscribers

Subscribe/Learn More  >

On the Accuracy of Wall Shear Stress Using DPIV

[+] Author Affiliations
Ali Etebari, Jason Carneal, Pavlos P. Vlachos

Virginia Polytechnic Institute and State University, Blacksburg, VA

Paper No. HT-FED2004-56839, pp. 691-700; 10 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Wall shear stress measurements are important for a variety of fluid mechanics phenomena and engineering applications ranging from estimation of viscous drag to the regulation of endothelial cell function in arterial flows [1–5]. Although DPIV has emerged over the past years as the method of choice for global non-invasive optical flow diagnostics [6–13] the issues associated with the indirect estimation of wall shear stresses from DPIV measured velocities have not been sufficiently addressed. The challenge is even more significant in the presence of deformable and dynamically moving boundaries. In particular such measurements require accurate determination of wall position, near-wall velocity measurements using DPIV algorithms, and the indirect estimation of the velocity derivatives in order to evaluate the shear stress. Dynamically moving boundaries, whether rigid or compliant, require special consideration, as the boundary position must be determined accurately as a function of space and time. It is necessary to quantify the accuracy of each measurement that contributes to the error of the wall shear stress estimation. In this work we decompose the problem into the following three aspects: (a) determination of the exact boundary points (b) DPIV velocity measurement uncertainty in the near wall region. (c) velocity derivative error. Methodologies and improvements addressing each aspect individually are proposed and a systematic parametric study of the related error is performed. To our knowledge, this is the first detailed parametric effort to quantify the errors associated with wall shear stress estimation from DPIV velocities.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In