Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Response Time for Thin Film Temperature Sensors in Lubricated Contact

[+] Author Affiliations
Yi Jia, Juan Guillermo Araya, Gustavo Gutiérrez

University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico

Paper No. HT-FED2004-56747, pp. 531-539; 9 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


Thin film temperature sensors integrated onto mechanical component surface are promising for real-time machine condition monitoring. In this paper one-dimensional heat conduction model has been developed to study the response time of the thin film sensors designed for monitoring of temperature distribution in elastohydrodynamic lubrication contact. A control volume approach was used to numerically analyze the effects of film thickness (from 0.1 μm to 100 μm), sensing materials, and substrate materials on the transient time response of the thin film sensor. Validation of the numerical model was compared to an analytical solution in a semi infinite domain. The time constants are obtained based on a constant heat load and sensor sensibility is studied when a typical dynamic pressure in lubricated contact is applied. The faster response time and the short time delay for a thin film sensor are expected in lower conductivity of substrate. It is also clear that the response time decreases with increasing film thickness and the conductivity of the substrate. Results show that when thickness of the sensor is less than 1 μm, the sensor is feasible to capture the transient temperature profile in real-time for machine health monitoring under various operating condition.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In