0

Full Content is available to subscribers

Subscribe/Learn More  >

Mechanisms of Enhanced Heat Transfer for Oscillating Circular Cylinders

[+] Author Affiliations
Tait Pottebaum, Mory Gharib

California Institute of Technology, Pasadena, CA

Paper No. HT-FED2004-56721, pp. 515-524; 10 pages
doi:10.1115/HT-FED2004-56721
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

Experiments were conducted to determine the relationship between wake structure and heat transfer for an oscillating circular cylinder in cross-flow. An internally heated cylinder was suspended in a water tunnel and oscillated transverse to the freestream. The cylinder’s heat transfer coefficient was measured over a wide range of oscillation amplitudes and frequencies. By comparing these results to the known wake mode regions in the amplitude-frequency plane, relationships between wake mode and heat transfer were identified. Representative cases were investigated further by using digital particle image thermometry/velocimetry (DPIT/V) to simultaneously measure the temperature and velocity fields in the near-wake. This revealed more detail about the mechanisms of heat transfer enhancement. The dynamics of the vortex formation process, including the trajectories of the vortices during roll-up, are the primary cause of the heat transfer enhancement.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In