0

Full Content is available to subscribers

Subscribe/Learn More  >

An Aid to Learn Computational Fluid Dynamics: Immersed-Boundary-Based Simulation of 2D Flow

[+] Author Affiliations
Sungsu Lee

Chungbuk National University, Cheongju, Republic of Korea

Kyung-Soo Yang, Jong-Yeon Hwang

Inha University, Incheon, Republic of Korea

Paper No. HT-FED2004-56281, pp. 283-287; 5 pages
doi:10.1115/HT-FED2004-56281
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

Development of geometry-independent computational method and educational codes for simulation of 2D flows around objects of complex geometry is presented. Referred as immersed boundary method, it introduces virtual forcing to governing equations to represent the effect of physical boundaries. The present method is based on a finite-volume approach on a staggered grid with a fractional-step method to solve Navier-Stokes equation and continuity equation. Both momentum and mass forcings are introduced on and inside the object to satisfy no-slip condition and mass conservation. Since Cartesian grid lines in general do not coincide with the immersed boundaries, several interpolation schemes are employed. Several examples are simulated using the method presented in this study and the results agree well with other results. Both user-friendly preprocessor with GUI and FORTRAN-based solver are open to the public for educational purposes.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In