0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhancing the Teaching of Fluid Mechanics and Transport Phenomena via FlowLab: A Computational Fluid Dynamics Tool

[+] Author Affiliations
Jennifer Sinclair Curtis, Kimberly Henthorn

Purdue University, West Lafayette, IN

Shane Moeykens, Murali Krishnan

Fluent, Inc., Lebanon, NH

Paper No. HT-FED2004-56164, pp. 165-174; 10 pages
doi:10.1115/HT-FED2004-56164
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

Introducing Computational Fluid Dynamics (CFD) to engineering students at the undergraduate level has become more common in recent years, although there are significant barriers for doing so using a generalized CFD solver. A common constraint is the quantity of material to be covered in a fixed amount of time in a given course, which leaves little time left for learning the use of a generalized CFD package. With this consideration in mind, FlowLab (www.flowlab.fluent.com ) was introduced by Fluent Inc. FlowLab may be described as a virtual fluids laboratory—a computer based analysis and visualization package. Using FlowLab, students solve predefined CFD exercises. These predefined exercises facilitate teaching and provide students with hands-on CFD experience. Through the design of each FlowLab exercise, students are introduced to engineering problems and concepts as well as CFD via a structured learning process. In the fall 2003 semester at Purdue University, FlowLab was used in CHE 540, a transport phenomena course offered within the School of Chemical Engineering. This course is open to advanced undergraduate engineering students and graduate students. Students were exposed to eight separate FlowLab exercises in this course. This paper gives a detailed summary of one of these specific exercises, developing flow in a pipe with and without heat transfer. The paper emphasizes how the use of CFD via FlowLab enhanced the teaching of specific concepts in transport phenomena as well as concepts in CFD such as creating a parametric geometry, discretizing the geometry, specifying boundary conditions, material properties and operating conditions, numerical solution techniques and post-processing. Experiences from this course are that FlowLab is a positive force for creating student interest and excitement in the area of fluid mechanics and transport phenomena. Using FlowLab’s post-processing capabilities, students were able to visualize complex flow fields and make direct comparison to analytical theory and experimental correlation. In addition, FlowLab provided a structured learning experience which reinforced proper pedagogy for applying CFD to engineering problems. Upon completion of the course, a student survey was performed in CHE 540 focusing on FlowLab integration and usage, and survey responses are summarized in this paper.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In