Full Content is available to subscribers

Subscribe/Learn More  >

Multiple Length Scales for Maximal Heat Transfer Density in Forced and Natural Convection

[+] Author Affiliations
Alexandre K. da Silva, Adrian Bejan

Duke University, Durham, NC

Yves Fautrelle

Institute National Polytechnique de Grenoble, Saint Martin d’Heres Cedex, France

Paper No. HT-FED2004-56133, pp. 133-141; 9 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


The present paper is a review of a new conceptual design for the maximization of heat transfer density (i.e., heat transfer rate per unit of volume) in channels installed in a fixed volume. The volume is filled optimally with parallel equidistant heated blades. The optimal spacing between two blades is such that the thermal boundary layers merge at the end of the channel. The blades can be cooled either by laminar natural or forced convection. Unheated volumes of fluid near the tips of the boundary layers are eliminated through the insertion of new generations of smaller blades. Based on the same principle, new generation of even smaller blades are added stepwise to the multi-scale structure. The optimal length of each family of new blades is determined based on the assumption that the flow downstream the smallest plates is not disturbed. This allows us to predict the exact height where the thermal boundary layer of two distinct generations will merge. As the number length of scales increase, the volume-averaged heat transfer density increases. The results show that the improvement associated with optimal insertion of the first and second generations of scales is significant. Diminishing returns are also observed as the complexity increases, meaning that the contribution of each smaller scale is less important than the contribution of the preceding scale. The theoretical results (i.e., the optimal spacings, optimal lengths, maximal heat transfer density and the cutoffs) are validated numerically.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In