Full Content is available to subscribers

Subscribe/Learn More  >

Rotor Boundary Layer Response to an Impinging Wake

[+] Author Affiliations
Francesco Soranna, Yi-Chih Chow, Oguz Uzol, Joseph Katz

Johns Hopkins University, Baltimore, MD

Paper No. HT-FED2004-56125, pp. 121-132; 12 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


This paper presents results of an experimental investigation on the response of a rotor boundary layer to an impinging Inlet Guide Vane (IGV) wake. High resolution two-dimensional Particle Image Velocimetry (PIV) measurements are conducted in a refractive index matched facility that provides an unobstructed view of the entire flow field. Data obtained at four different rotor phases, as the wake is chopped and passes by the rotor blade, allows us to examine the response of the rotor boundary layer to the mean flow and turbulence associated with the impinging wake. We focus on the suction side boundary layer in regions with adverse pressure gradients, from mid chord to the trailing edge. The phase-averaged velocity profiles are used for calculating the momentum and displacement thicknesses of the boundary layer, and for estimating the pressure gradients along the wall. Distributions of Reynolds stresses are also provided. The phase-averaged velocity profiles in the rotor boundary layer vary significantly with phase. During wake impingement the boundary layer becomes significantly thinner and more stable compared to other phases at the same location. Analysis of the possible causes for this trend suggests that the dominant contributors are unsteady, phase-dependent variation in pressure gradients along the wall.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In