Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Drag-Reducing Surfactant Additives on Vortex Structures and Turbulent Events in a Channel Flow

[+] Author Affiliations
Feng-Chen Li, Yasuo Kawaguchi, Takehiko Segawa

National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

Koichi Hishida

Keio University, Yokohama, Japan

Paper No. HT-FED2004-56119, pp. 103-110; 8 pages
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME


The characteristics of vortex structures and turbulent events of drag-reducing surfactant (CTAC) solution flows in a two-dimensional channel have been studied using particle image velocimetry (PIV) to measure the instantaneous velocity fields in a streamwise-wall-normal plane. Through visualizing the instantaneous velocity field, contour maps of the swirling strength and instantaneous value of uv, the characteristic angle of vortex packets was quantified, and it was shown that the drag-reducing CTAC additive reduced both the strength and frequency of turbulent bursts near the wall, and that the characteristics of vortex structures and bursts were not only dependent on drag-reduction level but also on concentration of additive. Based on the quantified parameters characterizing turbulent events in a wall-bounded turbulent flow, a model of turbulent contribution to the friction factor, fT , was proposed. It was obtained that fT was linearly proportional to the product of frequency and strength of turbulent events.

Copyright © 2004 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In