Full Content is available to subscribers

Subscribe/Learn More  >

Modeling DNA Motion Under Electrostatic Repulsion Within a Living Cell

[+] Author Affiliations
Regis A. David, Brian D. Jensen

Brigham Young University, Provo, UT

Paper No. DETC2009-87413, pp. 415-421; 7 pages
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: ASME Power Transmission and Gearing Conference; 3rd International Conference on Micro- and Nanosystems; 11th International Conference on Advanced Vehicle and Tire Technologies
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4903-3 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME


We are developing a new technique, called nanoinjection, to insert foreign DNA into a living cell. Such DNA transfection is commonly used to create transgenic organisms vital to the study of genetics, immunology, and many other biological sciences. In nanoinjection, DNA, which has a net negative charge, is electrostatically attracted to a micromachined lance. The lance then pierces the cell membranes, and the voltage on the lance is reversed, repelling the DNA into the cell. This paper presents a mathematical model to predict the motion (trajectory) of DNA particles within a cell in the presence of the electric field developed by the lance and the substrate. The model is used to predict the scattering of DNA through the cell due to electrostatic repulsion. We are currently preparing experiments which will be used to validate the model.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In