0

Full Content is available to subscribers

Subscribe/Learn More  >

Direct Assessment of the Accuracy of Stereo PIV in Turbulent Channel Flow

[+] Author Affiliations
Y. Wu, K. T. Christensen

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. HT-FED2004-56055, pp. 21-28; 8 pages
doi:10.1115/HT-FED2004-56055
From:
  • ASME 2004 Heat Transfer/Fluids Engineering Summer Conference
  • Volume 1
  • Charlotte, North Carolina, USA, July 11–15, 2004
  • Conference Sponsors: Heat Transfer Division and Fluids Engineering Division
  • ISBN: 0-7918-4690-3 | eISBN: 0-7918-3740-8
  • Copyright © 2004 by ASME

abstract

Stereo particle-image velocimetry (PIV) has become a widely-used method for studying complex flows because it allows one to acquire instantaneous, three-component velocity data on a planar domain with high spatial resolution. However, the accuracy of such measurements must be carefully evaluated before stereo PIV data can be faithfully used in the development of sophisticated turbulence models, assessment of appropriate computational boundary conditions, and in the validation of advanced computations. To this end, the accuracy of stereo PIV is assessed directly in an actual turbulent environment: two-dimensional turbulent channel flow. This flow is a challenging test of stereo PIV because the turbulent velocity fluctuations are quite small compared to the mean (typically less than ten percent of the mean velocity) and strong velocity gradients exist in the near-wall region. Measurements are made in the streamwise–wall-normal plane along the channel’s spanwise centerline using both stereoscopic and conventional 2-D PIV. A large ensemble of statistically independent velocity realizations are acquired with each method at a friction Reynolds number Reτ = u*h/ν = 934. Single-point statistics are computed from the experimental data and compared to statistics determined from a direct numerical simulation (DNS) of turbulent channel flow at a nearly-identical friction Reynolds number of 940 [5]. Excellent agreement is found in the outer region of the flow (y/h > 0.15, where h is the half-height of the channel). For y/h < 0.15, both the conventional and stereo PIV results differ from the DNS data. These differences are most-likely a manifestation of errors associated with strong velocity gradients and intense turbulent events present in this region of the flow.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In