Full Content is available to subscribers

Subscribe/Learn More  >

Optimized Simulation Method and Experimental Verification on Dynamic Analysis of a Light Truck Frame

[+] Author Affiliations
Feng Gao, Yonghua Xiong, Farong Du, Guoyan Xu

Beihang University, Beijing, China

Lei Tian

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DETC2009-86193, pp. 695-701; 7 pages
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: ASME/IEEE 2009 International Conference on Mechatronic and Embedded Systems and Applications; 20th Reliability, Stress Analysis, and Failure Prevention Conference
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4900-2 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME


The three-dimensional geometric model of the fringe-beam frame had been built based on the frame structure of a light truck. In order to optimize the frame structure, the finite element model of the frame and the suspension system were set up. Considering the influence of suspension on frame dynamic performance, the modal properties of the frame model was analyzed in the commercial analysis program ANSYS, using two different methods. Based on the experiments, it was verified that combining MPC184 elements and spring elements Combin14 is a better way to simulate suspension compared to using spring finite elements only. Furthermore, the combined simulation results coincide with experimental modal analysis results, which were conducted thereafter. Subsequently, the frame stress-strain distribution rules and dynamics response were calculated under the random road spectrum excitation, and the frame dynamic parameters were obtained. This study provides some theoretical bases for frame structure improvement, and proposes an optimum method to simulate suspension. The results have direct significance in ensuring the stability, comfort and reliability of a light truck frame.

Copyright © 2009 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In