Full Content is available to subscribers

Subscribe/Learn More  >

Towards Solving the Missing Marker Problem in Realtime Motion Capture

[+] Author Affiliations
Tommaso Piazza, Johan Lundström, Alexander Hugestrand, Morten Fjeld

Chalmers University of Technology, Göteborg, Sweden

Andreas Kunz

Swiss Federal Institute of Technology, Zurich, Switzerland

Paper No. DETC2009-86517, pp. 1521-1526; 6 pages
  • ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2: 29th Computers and Information in Engineering Conference, Parts A and B
  • San Diego, California, USA, August 30–September 2, 2009
  • Conference Sponsors: Design Engineering Division and Computers in Engineering Division
  • ISBN: 978-0-7918-4899-9 | eISBN: 978-0-7918-3856-3
  • Copyright © 2009 by ASME


A common problem in optical motion capture is the so-called missing marker problem. The occlusion of markers can lead to significant loss of tracking accuracy unless continuous data flow is guaranteed by computationally demanding interpolation or extrapolation schemes. Since interpolation algorithms require data sampled before and after an occlusion, they cannot be used for real-time applications. Extrapolation algorithms only require data sampled before an occlusion. Other algorithms require statistical data and are designed for post-processing. In order to bridge sampling gaps caused by occluded markers and hence to improve 3D real-time motion capture, we suggest a real-time extrapolation algorithm. The realization of this prediction algorithm does not need statistical data or rely on an underlying cinematic human model with pre-defined marker distances. Under the assumption that natural motion can be linear, circular, or a linear combination of both, a prediction method is suggested and realized. The paper presents linear and circular movement measurements for use when a marker is briefly lost. The suggested extrapolation method seems to behave well for a reasonable number of frames, not exceeding 200 milliseconds.

Copyright © 2009 by ASME
Topics: Motion



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In