0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Simulation of Blood Flow Through Stenosed Vessel

[+] Author Affiliations
Kimie Onogi, Kazuhiro Kohge, Kiyoshi Minemura

Nagoya University, Nagoya, Aichi, Japan

Paper No. PVP2004-3124, pp. 93-102; 10 pages
doi:10.1115/PVP2004-3124
From:
  • ASME/JSME 2004 Pressure Vessels and Piping Conference
  • Computational Technologies for Fluid/Thermal/Structural/Chemical Systems With Industrial Applications, Volume 2
  • San Diego, California, USA, July 25–29, 2004
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4686-5
  • Copyright © 2004 by ASME

abstract

This article illustrates numerical results on pulsating blood flow through moderately stenosed blood vessel. Two kinds of waveform, that is, a purely sinusoidal waveform and a non-sinusoidal one just like human blood flow are calculated for two cases of heart rate as 60 and 160 (1/s), and resultant flow behavior such as flow velocities, secondary flow, wall shear stress and pressure change are discussed. The abrupt changes in the pressure and wall shear stress occur on the throat of the stenosis, suggesting that this part is easily damaged by the effects when the heart rate is increased.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In