0

Full Content is available to subscribers

Subscribe/Learn More  >

Improvements on a Newton-Krylov Based Solver for CFD Models Using Finite Rate NOx Chemistry

[+] Author Affiliations
Qing Tang, Martin Denison, Mike Maguire, Mike Bockelie

Reaction Engineering International, Salt Lake City, UT

Jyh-Yuan Chen

University of California at Berkeley, Berkeley, CA

Paper No. PVP2004-3118, pp. 43-50; 8 pages
doi:10.1115/PVP2004-3118
From:
  • ASME/JSME 2004 Pressure Vessels and Piping Conference
  • Computational Technologies for Fluid/Thermal/Structural/Chemical Systems With Industrial Applications, Volume 2
  • San Diego, California, USA, July 25–29, 2004
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 0-7918-4686-5
  • Copyright © 2004 by ASME

abstract

In this paper, we describe our progress on improving the performance of a newly developed Computational Fluid Dynamics (CFD) modeling tool, which uses reduced chemical kinetics mechanisms to model the finite rate chemistry effects and solves the resulting system of stiff partial differential equations with a matrix-free Newton-Krylov method. A multi-grid based preconditioner and a Newton iteration scheme have been implemented in the Newton-Krylov solver and the reduced mechanism module, respectively, to replace the original Picard based preconditioner and the point iteration scheme for steady state species evaluation. Preliminary tests of the improved modeling tool have been conducted using simple hotbox and a full-scale, coal fired electric utility boiler, and shown very promising results in terms of the accuracy, robustness, and efficiency of the new tool.

Copyright © 2004 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In